ЛЕКЦИЯ 5

Обзор моделей нейронных сетей Dense neural network,
Convolutional neural network, Recurrent neural network, Transformer
для выявления DDoS атак

КЛАССИФИКАЦИЯ

Нейронные сети:

- Глубокие нейронные сети (DNN)
- Сверточные нейронные сети (CNN)
- Рекуррентные нейронные сети (RNN).
- Нейронная сеть Bidirectional Encoder Representations from Transformers (BERT)

Сбор данных

На этом этапе формируется датасет с трафиком сети, который включает как нормальный, так и вредоносный трафик (DDoS-атаки). **Источники данных:**

- Лог-файлы серверов
- Захват трафика с помощью Wireshark, Tcpdump
- Датасеты, например, CICDDoS2019, NSL-KDD, CAIDA DDoS
- Мониторинг в реальном времени через SNMP, NetFlow, sFlow

Параметры трафика:

- IP-адреса отправителя и получателя
- Число пакетов за единицу времени
- Размер пакетов
- Количество соединений с одним IP
- Используемые протоколы (TCP, UDP, ICMP)
- Время жизни соединений (TTL)

	index	Unnamed: 0	Flow ID	Src IP	Src Port	Dst IP	Dst Port	Protocol	Timestamp	Flow Duration	 Fwd Seg Size Min	Acti Me
0	1886844	1811706	172.31.0.2-172.31.67.82-53-59931-17	172.31.67.82	59931	172.31.0.2	53	17	20/02/2018 10:44:37	20349	 8	
1	1667897	4243700	172.31.66.81-13.89.190.129-49673-443-6	172.31.66.81	49673	13.89.190.129	443	6	20/02/2018 12:01:12	77452	 20	1
2	2590662	2634346	172.31.64.87-209.85.203.132-50315-443-6	209.85.203.132	443	172.31.64.87	50315	6	20/02/2018 09:31:35	21010	 20	
3	2619695	25116	172.217.6.193-192.168.10.12-80-41588-6	192.168.10.12	41588	172.217.6.193	80	6	03/07/2017 06:16:17 PM	5436329	 0	
4	2387220	3687623	172.31.0.2-172.31.66.28-53-51056-17	172.31.66.28	51056	172.31.0.2	53	17	20/02/2018 09:04:25	70607	 8	
3186677	1081031	1473462	172.31.69.25-18.219.193.20-80-40358-6	18.219.193.20	40358	172.31.69.25	80	6	16/02/2018 11:25:29 PM	13964	 0	
3186678	1649871	3439156	172.31.66.116-64.30.228.118-49756-443-6	172.31.66.116	49756	64.30.228.118	443	6	20/02/2018 08:33:35	128223	 20	1
3186679	1621073	4592346	172.31.67.12-216.58.198.66-49851-443-6	172.31.67.12	49851	216.58.198.66	443	6	20/02/2018 08:42:07	52905037	 20	
3186680	1886020	372111	192.168.10.25-23.194.182.12-59968-443-6	192.168.10.25	59968	23.194.182.12	443	6	03/07/2017 09:33:39 PM	3	 0	
3186681	992532	1119466	172.31.69.25-18.219.193.20-80-47790-6	18.219.193.20	47790	172.31.69.25	80	6	16/02/2018 11:22:50 PM	15017	 0	

3186682 rows x 86 columns

Предобработка данных

• Сетевые данные, полученные на предыдущем этапе, должны быть очищены и приведены в удобный формат для машинного обучения.

Действия:

- Удаление дубликатов и неинформативных записей
- Очистка данных (устранение отсутствующих значений, обработка выбросов)
- Приведение категориальных данных к числовому виду (например, с помощью One-Hot Encoding)
- Нормализация и стандартизация (Min-Max Scaling, Standard Scaling)

```
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import MinMaxScaler
cat_cols = ['Flow ID', 'Src IP', 'Dst IP', 'Timestamp']
numerical_cols = list(set(DDoS.columns.values.tolist()) - set(cat_cols) - set(['Label']) - set(['Label_val']))
DDoS cat = DDoS[['Flow ID', 'Src IP', 'Dst IP', 'Timestamp']]
DDoS num = DDoS[numerical cols]
DDoS['Flow ID']
             172.31.0.2-172.31.67.82-53-59931-17
         172.31.66.81-13.89.190.129-49673-443-6
         172.31.64.87-209.85.203.132-50315-443-6
         172.217.6.193-192.168.10.12-80-41588-6
             172.31.0.2-172.31.66.28-53-51056-17
            204.46.57.85-192.168.0.2-9440-5000-6
99995
99996
         83.190.207.124-192.168.0.2-54034-5000-6
99997
         104.125.75.232-192.168.0.2-59426-5000-6
99998
         176.33.53.116-192.168.0.2-40697-5000-6
         159.101.32.120-192.168.0.2-52542-5000-6
Name: Flow ID, Length: 3286682, dtype: object
```

```
le = LabelEncoder()
```

```
le_list = []
```

```
le.fit(DDoS['Flow ID'])
DDoS_cat['Flow ID'] = le.transform(DDoS_cat['Flow ID'])
le_list.append(le)
le = LabelEncoder()
le.fit(DDoS['Src IP'])
DDoS_cat['Src IP'] = le.transform(DDoS_cat['Src IP'])
le_list.append(le)
le = LabelEncoder()
le.fit(DDoS['Dst IP'])
DDoS_cat['Dst IP'] = le.transform(DDoS_cat['Dst IP'])
le_list.append(le)
le = LabelEncoder()
le.fit(DDoS['Timestamp'])
DDoS_cat['Timestamp'] = le.transform(DDoS_cat['Timestamp'])
le_list.append(le)
```

Chi_square feature selection

```
bestfeatures = SelectKBest(score func=chi2, k=20)
fit feat = bestfeatures.fit(DDoS scaled,DDoS['Label val'])
DDoS scores = pd.DataFrame(fit feat.scores )
DDoS columns = pd.DataFrame(DDoS scaled.columns)
featureScores = pd.concat([DDoS columns,DDoS scores],axis=1)
featureScores.columns = ['Specs', 'Score']
print(featureScores.nlargest(20, 'Score'))
                   Score
           388598.076703
           370244.162533
           220029.050536
           193953.300683
           145341.568751
           136127.520106
           128360.427367
           113455.768657
            87027.910555
            82895.984496
33
            82196.174561
51
            80343.230693
49
            74135.051586
58
            70569.787748
47
            57870.084500
            37909.910790
            35396.278029
            27414.719814
            21301 278043
```

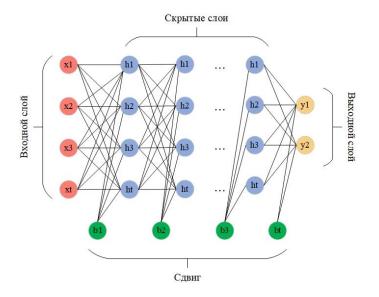
- Разделение данных на обучающую и тестовую выборки
- Данные разделяются следующим образом:
- Обучающая выборка (Train Set): 70-80% данных
- Тестовая выборка (Test Set): 20-30% данных
- Дополнительно можно использовать **кросс-валидацию (k-fold cross-validation)** для более точной оценки моделей.

НЕЙРОННЫЕ СЕТИ

■ Традиционные алгоритмы машинного обучения позволяют добиться хороших результатов классификации данных. Тем не менее в последнее десятилетие подход на основе нейронных сетей стал доминирующим в области искусственного интеллекта, показывающего высокую точность в таких задачах, как распознавание речи и изображений, классификация текстов и обработка естественных языков. Существуют несколько видов часто используемых нейронных сетей: глубокие нейронные сети (DNN), сверточные нейронные сети (CNN) и рекуррентные нейронные сети (RNN). Одной из самых последних разработок в области обработки естественных языков стала нейронная сеть, основанная на архитектуре Трансформера, названная Bidirectional Encoder Representations from Transformers (BERT).

ГЛУБОКИЕ НЕЙРОННЫЕ СЕТИ

• Глубокие нейронные сети (DNN) представляют собой модель нейронных сетей с двумя и более скрытыми слоями. Нейронная сеть состоит из входного слоя, содержащего входные данные, скрытых слоев, включающих узлы, называемые нейронами, и выходного слоя, содержащего один или несколько нейронов



ГЛУБОКИЕ НЕЙРОННЫЕ СЕТИ

- При этом $x = x_1, x_2, ..., x_f$ вляется входным вектором, $w_1, w_2, ..., w_i$ еса соединения каждого уровня,
- $b_1,b_2,...,b_i$ вектор смещения. Уровни от до l_2 образуют скрытые слои, $y_1,y_2,...,y_m$ явдяется выходным вектором.
- Элементы скрытых и выходных слоев называются нейронами. Они представлены функциями активации, отвечающими за нелинейное функциональное отображение между входными данными и переменной отклика. Самыми популярными функциями активации являются сигмоидная функция, функция гиперболического тангенса (tanh), выпрямленная линейная единица (ReLu) и softmax. Сигмоидная функция в основном используется на выходном слое в бинарной классификации, так как определяет выходное значение как 0 или 1. Функция tanh − это улучшенная версия сигмоидной функции с разницей лишь в том, что в tanh выходные значения находятся в диапазоне от -1 до 1. В скрытых слоях чаще всего применяется функция активации ReLu. Это приводит к выходному значению 0, если он получает отрицательный вход x, иначе для положительных входов он возвращает x без изменений, подобно линейной функции.
- Функция *softmax* применяется в многоклассовой классификации, вычисляя вероятность того, что каждое вхождение принадлежит к заранее определенному классу, и корректирует выходные значения для каждого класса так, чтобы они находились в диапазоне от 0 до 1. Функция *softmax* обычно используется только для выходного слоя.

ГЛУБОКИЕ НЕЙРОННЫЕ СЕТИ

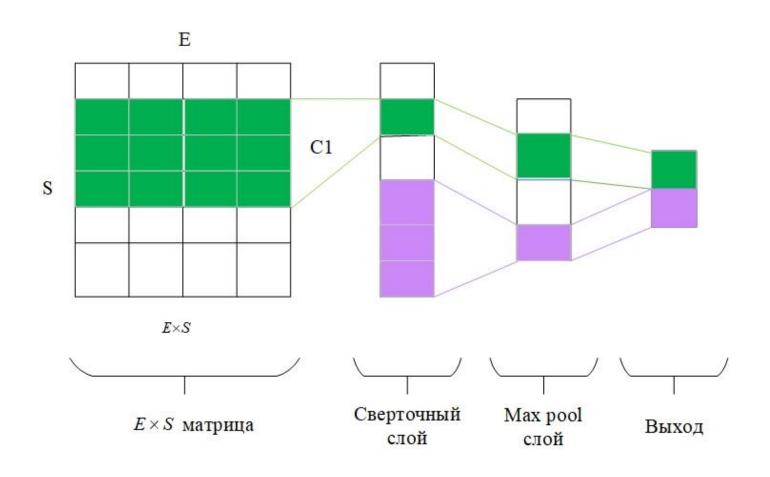
Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 32)	672
activation (Activation)	(None, 32)	0
dropout (Dropout)	(None, 32)	0
dense_1 (Dense)	(None, 16)	528
activation_1 (Activation)	(None, 16)	0
dense_2 (Dense)	(None, 1)	17
activation_2 (Activation)	(None, 1)	0
Total params: 1,217 Trainable params: 1,217 Non-trainable params: 0		

СВЕРТОЧНЫЕ НЕЙРОННЫЕ СЕТИ

Сверточные нейронные сети (CNN) — один из популярных и часто используемых видов нейронных сетей, приобрётший большую популярность благодаря использованию в задачах классификации и распознавания изображений. Они применяются при работе с изображениями, в которых фильтр перемещается по самому изображению. Также сверточные нейронные сети получили распространение и в задачах по распознаванию речи, обработке естественных языков и анализу тональности. При работе с текстовыми данными необходимо учитывать, что слова имеют разную длину, и в векторном представлении их необходимо привести к одинаковой размерности. Для векторного преобразования обычно используются такие вхождения слов, как Word2vec, Glove и FastText.

СВЕРТОЧНЫЕ НЕЙРОННЫЕ СЕТИ



СВЕРТОЧНЫЕ НЕЙРОННЫЕ СЕТИ

```
with strategy.scope():
    model_cnn = Sequential()
    model_cnn.add(Conv1D(filters=nb_filter, kernel_size=filter_length, activation='relu', input_shape=(20,1)))
    model_cnn.add(GlobalMaxPooling1D())
    model_cnn.add(Dense(hidden_dims))
    model_cnn.add(Dropout(0.4))
    model_cnn.add(Activation('relu'))
    model_cnn.add(Flatten())
    model_cnn.add(Dense(32, activation='relu'))
   model_cnn.add(Dropout(0.4))
    model_cnn.add(Dense(16, activation='relu'))
    model_cnn.add(Dropout(0.4))
    model_cnn.add(Dense(1, activation='sigmoid'))
    optimizer = Adam(learning_rate=0.000008)
    model_cnn.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy', Precision(), Recall(),
                                                                            tfa.metrics.FBetaScore(num classes=2,average="micro"
    model cnn.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
conv1d (Conv1D)	(None, 18, 250)	1000
<pre>global_max_pooling1d (Globa lMaxPooling1D)</pre>	(None, 250)	0
dense (Dense)	(None, 250)	62750
dropout (Dropout)	(None, 250)	0
activation (Activation)	(None, 250)	0
flatten (Flatten)	(None, 250)	0
dense_1 (Dense)	(None, 32)	8032
dropout_1 (Dropout)	(None, 32)	0
dense_2 (Dense)	(None, 16)	528
dropout_2 (Dropout)	(None, 16)	0
dense_3 (Dense)	(None, 1)	17

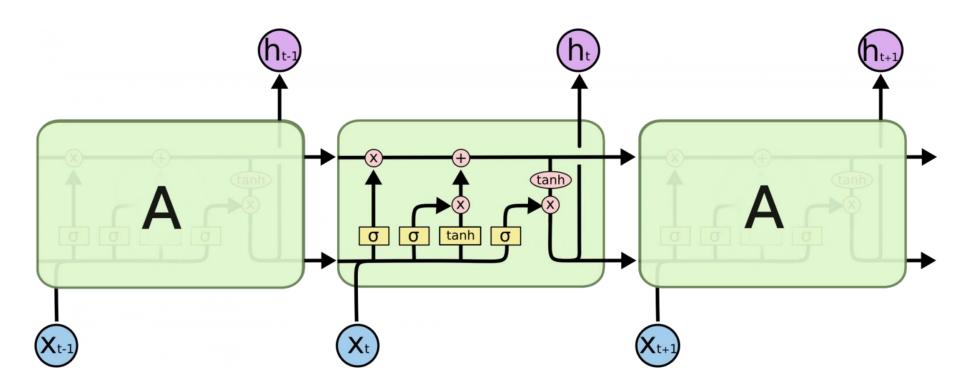
Total params: 72,327 Trainable params: 72,327 Non-trainable params: 0

LONG SHORT-TERM MEMORY - LSTM

- Долгая краткосрочная память (Long short-term memory LSTM) особая разновидность архитектуры рекуррентных нейронных сетей, способная к обучению долговременным зависимостям. Они были представлены Зеппом Хохрайтер и Юргеном Шмидхубером в 1997 году, а затем усовершенствованы и популярно изложены в работах многих других исследователей. Они прекрасно решают целый ряд разнообразных задач и в настоящее время широко используются.
- LSTM разработаны специально, чтобы избежать проблемы долговременной зависимости. Запоминание информации на долгие периоды времени – это их обычное поведение, а не что-то, чему они с трудом пытаются обучиться.
- Любая рекуррентная нейронная сеть имеет форму цепочки повторяющихся модулей нейронной сети. В
 обычной RNN структура одного такого модуля очень проста, например, он может представлять собой
 один слой с функцией активации tanh (гиперболический тангенс).

LONG SHORT-TERM MEMORY - LSTM

 Структура LSTM также напоминает цепочку, но модули выглядят иначе. Вместо одного слоя нейронной сети они содержат целых четыре, и эти слои взаимодействуют особенным образом



LONG SHORT-TERM MEMORY - LSTM

WARNING:tensorflow:Layer lstm_3 will not use cuDNN kernels since it doesn't meet the criteria. It will use a generic GPU kernel as fallback when running on GPU.

Model: "sequential_1"

Layer (type)	Output Shape	Param #			
lstm_2 (LSTM)	(None, 20, 64)	16896			
<pre>spatial_dropout1d_1 (Spatia lDropout1D)</pre>	(None, 20, 64)	0			
lstm_3 (LSTM)	(None, 32)	12416			
dropout_1 (Dropout)	(None, 32)	0			
dense_1 (Dense)	(None, 1)	33			

Total params: 29,345 Trainable params: 29,345 Non-trainable params: 0

СПАСИБО ЗА ВНИМАНИЕ!!!